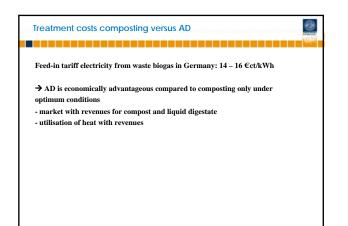
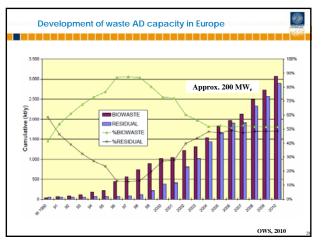


Dry Digestion, batch process
Temporally displaced gas production in the boxes by temporally displaced starting up the process biogas production
biogas production box 1 box 2 box 3 box 4 A few days before ending of the retention time the percolation will be stopped to reduce the moisture content Before opening the box is flooded with exhausted air from the CHP to evacuate the methane


	Dry matter content	Nitrogen (N)	Phosphorous (P ₂ O ₅)	Potassium (K ₂ O)
	%	g/kg TM		
iquid digestate screw press)	16	19,4	10,0	30,7
Solid digestate	58	14,2	8,9	10,6
mpost		14,2	0,0	10,0


	erisation of liquids as fertilizer of generation and batch AD processes
1. Nutr	ients and organic matter concentration increases with dry matter content
2. Enri	ched with K ₂ O
0	ogen, h ammonia concentration (directly available to plant growth) le organically bound nitrogen
4. Heav	yy metals similar to biowaste (in relation to the dry matter)
	e of nutrients approx. 10 ${\rm Gm^3}$ for liquids with high dry matter content 18 %)
	of high nitrogen losses when spread to land without special techniques p injection)
	itations for land application (Winter, pastry land, fodder growing land) rage necessary
8. Sani	tisation required
	24

Wolfgang Müller, Universität Innsbruck, Austria

Batch fermentation new developments "Smartferm"	typical capacity > 10,000 tpa 4,000 tpa	Invest cost (indicative only) 4 - 6 Mio €
Dry digestion, continuos process	> 15,000 tpa	6 – 9 Mio €
Wet digestion	> 30,000 tpa	12 - 18 Mio €

	Agricultural AD	Biowaste AD
Invest cost		
Per MW electrical power installed (€)	3.500 (2.000 – 6.000)	10.000 - 12.000
Per t treatement capacity (€/t)		350 - 500

Conclusions

- 1. AD experienced a rapid development in the last 10 15 years
- 2. With AD renewable energy can be produced
- 3. The invest costs for waste AD are substantially higher compared to composting
- 4. Whether AD is economically viable depends on the local conditions and the revenues for the renewable energy
- 5. Compost from digestate is suitable for agriculural use independent of the type of AD process
- 6. No problem to achieve mature compost and good plant tolerance
- 7. Digestate compost shows higher quality for substrate production than composting alone due to reduced salt and soluble nutrients content
- 8. Process water from AD is rich in readily available nutrients and can therefore be used as liquid fertilizer
- 9. AD can be integrated into an existing composting facility

Thank you for your attention

.

Wolfgang.Mueller@uibk.ac.at